Linear and Nonlinear Dynamical Chaos
نویسنده
چکیده
Interrelations between dynamical and statistical laws in physics, on the one hand, and between the classical and quantum mechanics, on the other hand, are discussed with emphasis on the new phenomenon of dynamical chaos. The principal results of the studies into chaos in classical mechanics are presented in some detail, including the strong local instability and robustness of the motion, continuity of both the phase space as well as the motion spectrum, and time reversibility but nonrecurrency of statistical evolution, within the general picture of chaos as a specific case of dynamical behavior. Analysis of the apparently very deep and challenging contradictions of this picture with the quantum principles is given. The quantum view of dynamical chaos, as an attempt to resolve these contradictions guided by the correspondence principle and based upon the characteristic time scales of quantum evolution, is explained. The picture of the quantum chaos as a new generic dynamical phenomenon is outlined together with a few other examples of such a chaos including linear (classical) waves and digital computer. I conclude with discussion of the two fundamental physical problems: the quantum measurement (ψ–collapse), and the causality principle which both appear to be related to the phenomenon of dynamical chaos. Lectures on the Intern. Summer School ”Nonlinear Dynamics and Chaos”, Ljubljana, Slovenia, 1994
منابع مشابه
CONTROL OF CHAOS IN A DRIVEN NON LINEAR DYNAMICAL SYSTEM
We present a numerical study of a one-dimensional version of the Burridge-Knopoff model [16] of N-site chain of spring-blocks with stick-slip dynamics. Our numerical analysis and computer simulations lead to a set of different results corresponding to different boundary conditions. It is shown that we can convert a chaotic behaviour system to a highly ordered and periodic behaviour by making on...
متن کاملNonlinear dynamic of the multicellular chopper
In this paper, the dynamics of multicellular chopper are considered. The model is described by a continuous time three--dimensional autonomous system. Some basic dynamical properties such as Poincar'e mapping, power spectrum and chaotic behaviors are studied. Analysis results show that this system has complex dynamics with some interesting characteristics.
متن کاملInvestigating Chaos in Tehran Stock Exchange Index
Modeling and analysis of future prices has been hot topic for economic analysts in recent years. Traditionally, the complex movements in the prices are usually taken as random or stochastic process. However, they may be produced by a deterministic nonlinear process. Accuracy and efficiency of economic models in the short period forecasting is strategic and crucial for business world. Nonlinear ...
متن کاملDynamical behavior and synchronization of hyperchaotic complex T-system
In this paper, we introduce a new hyperchaotic complex T-system. This system has complex nonlinear behavior which we study its dynamical properties including invariance, equilibria and their stability, Lyapunov exponents, bifurcation, chaotic behavior and chaotic attractors as well as necessary conditions for this system to generate chaos. We discuss the synchronization with certain and uncerta...
متن کاملChaos Synchronization of Nonlinear Fractional Discrete Dynamical Systems via Linear Control
Abstract: By using a linear feedback control technique, we propose a chaos synchronization scheme for nonlinear fractional discrete dynamical systems. Then, we construct a novel 1-D fractional discrete income change system and a kind of novel 3-D fractional discrete system. By means of the stability principles of Caputo-like fractional discrete systems, we lastly design a controller to achieve ...
متن کامل